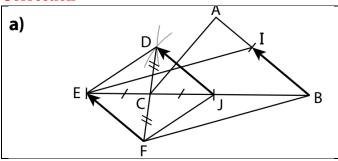
<u>Vecteurs</u> <u>Corrigé des exercices du cours</u>


Exercice 2:

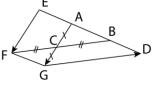
ABC est un triangle.

I est un point du côté [AB] distinct de B et J un point du côté [BC].

- a) Construire le point D tel que $\overrightarrow{JD} = \overrightarrow{BI}$.
- b) Les points E et F sont les symétriques respectifs des points J et D par rapport au point C. Démontrer que le quadrilatère BIEF est un parallélogramme.

Correction

b) Les segments [DF] et [EJ] se coupent en leur milieu C, donc DJFE est un parallélogramme.


Exercice 3

ABC est un triangle.

- Placer les points D, E, F et Q tels que $\overrightarrow{EA} = \overrightarrow{AB} = \overrightarrow{BD}$ et tels que les segments [AG] et [BF] ont le même milieu C.
- b) Démontrer que $\overrightarrow{AG} = \overrightarrow{EF}$. Que peut-on en déduire pour les droites (AG) et (EF)?
- c) Démontrer que les droites (BF) et (DG) sont parallèles.
- d) Démontrer que les droites (AF) et (BG) sont parallèles.

Correction

a)

b) Les segments [AG] et [BF] se coupent en leur milieu C, donc ABGF est un parallélogramme.

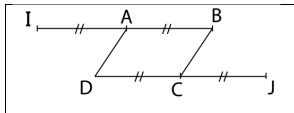
Ainsi $\overrightarrow{AB} = \overrightarrow{FG}$.

Or $\overrightarrow{AB} = \overrightarrow{EA}$, donc $\overrightarrow{FG} = \overrightarrow{EA}$ et le quadrilatère FGAE est un parallélogramme. On en déduit que $\overrightarrow{AG} = \overrightarrow{EF}$. Les droites (AG) et (EF) sont donc parallèles.

c) $\overrightarrow{AB} = \overrightarrow{FG}$ et $\overrightarrow{AB} = \overrightarrow{BD}$ donc $\overrightarrow{BD} = \overrightarrow{FG}$.

On en déduit que BDGF est un parallélogramme et que les droites (BF) et (DG) sont parallèles.

d) On sait que ABGF est un parallélogramme, les droites (AF) et (BG) sont donc parallèles.


Exercice 4

ABCD est un parallélogramme.

I est le symétrique de B par rapport à A et J est le symétrique de D par rapport à C.

- a) Citer des vecteurs égaux de cette figure.
- b) En déduire que AICJ est un parallélogramme.

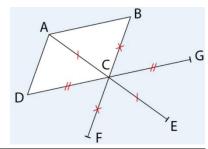
Correction

a) $\overrightarrow{AB} = \overrightarrow{DC}$ car ABCD est un parallélogramme.

 $\overrightarrow{AB} = \overrightarrow{IA}$ car A est le milieu de [IB].

 $\overrightarrow{DC} = \overrightarrow{CJ}$ car C est le milieu de [DJ].

b) $\overrightarrow{IA} = \overrightarrow{AB} = \overrightarrow{DC} = \overrightarrow{CJ}$


En particulier $\overrightarrow{IA} = \overrightarrow{CJ}$, donc AICJ est un parallélogramme.

Exercice 5

ABCD est un parallélogramme.

E, F et G sont les symétriques respectifs de A, B et D par rapport à C.

- a) Démontrer que $\overrightarrow{DC} = \overrightarrow{FE}$.
- b) Démontrer que les droites (CF) et (GE) sont parallèles.

Correction

a) ABCD est un parallélogramme donc

 $\overrightarrow{AB} = \overrightarrow{DC}$

Les segments [AE] et [BF] se coupent en leur milieu C, donc ABEF est un parallélogramme.

Ainsi $\overrightarrow{AB} = \overrightarrow{FE}$. On obtient $\overrightarrow{DC} = \overrightarrow{FE}$.

b) D'après **a)** $\overrightarrow{DC} = \overrightarrow{FE}$. Or C est le milieu de [DG] donc $\overrightarrow{DC} = \overrightarrow{CG}$. On en déduit que $\overrightarrow{CG} = \overrightarrow{FE}$ et que CGEF est un parallélogramme; les droites (CF) et (GE) sont donc parallèles.

Exercice 7

Dans un repère on donne les points : I(2; -2), J(-1; -1), K(0; 1), L(-3; 2).

- a) Placer ces points dans un repère.
- b) Calculer les coordonnées des vecteurs \overrightarrow{IJ} et \overrightarrow{KL} . Contrôler les résultats par une lecture graphique.
- c) Que peut-on en déduire pour le quadrilatère IJLK?

Correction

b) $\overrightarrow{IJ}(-1-2;-1-(-2))$ donc $\overrightarrow{IJ}(-3;1)$ $\overrightarrow{KL}(-3-0;2-1)$ donc $\overrightarrow{KL}(-3;1)$ c) Les vecteurs \overrightarrow{IJ} et \overrightarrow{KL} ont les mêmes coordonnées, on en déduit que $\overrightarrow{IJ} = \overrightarrow{KL}$.

IJLK est donc un parallélogramme.

Exercice 8

On reprend les points I, J, K, L donnés a l'exercice 7.

- a) Déterminer les coordonnées des milieux des segments [IL] et [JK].
- b) Que peut-on en déduire pour le quadrilatère IJLK?

Correction

a) On note M le milieu de [IL] et N le milieu de [JK].

$$M\left(\frac{2+(-3)}{2};\frac{-2+2}{2}\right) ainsi \ M\left(-\frac{1}{2};0\right).$$

$$N\left(\frac{-1+0}{2}; \frac{-1+1}{2}\right)$$
 ainsi $N\left(-\frac{1}{2}; 0\right)$.

b) Les points M et N ont les mêmes coordonnées, ils sont confondus.

[IL] et [JK] ont donc le même milieu, le quadrilatère IJLK est donc un parallélogramme.

Exercice 9

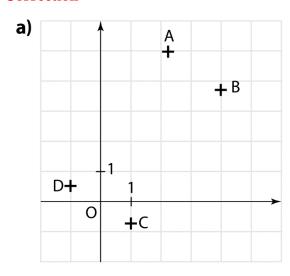
Dans un repère, on donne les points :

A (-2; 1), B (3; 3), C(-2; -4), D(3; -6), E (3; -2).

- a) Calculer les coordonnées des vecteurs \overrightarrow{AB} , \overrightarrow{CE} , \overrightarrow{ED} et \overrightarrow{AC} .
- b) Les quadrilatères ABEC et AEDC sont-ils des parallélogrammes ? Justifier.

Correction

a)
$$\overrightarrow{AB}(3-(-2);3-1)$$
 donc $\overrightarrow{AB}(5;2)$.
 $\overrightarrow{CE}(3-(-2);-2-(-4))$ donc $\overrightarrow{CE}(5;2)$.
 $\overrightarrow{ED}(3-3;-6-(-2))$ donc $\overrightarrow{ED}(0;-4)$.
 $\overrightarrow{AC}(-2-(-2);-4-1)$ donc $\overrightarrow{AC}(0;-5)$.


b) Les vecteurs \overrightarrow{AB} et \overrightarrow{CE} ont les mêmes coordonnées, on a donc $\overrightarrow{AB} = \overrightarrow{CE}$ et ABEC est un parallélogramme. Les vecteurs \overrightarrow{ED} et \overrightarrow{AC} n'ont pas les mêmes coordonnées, $\overrightarrow{ED} \neq \overrightarrow{AC}$ et AEDC n'est pas un parallélogramme.

Exercice 10

Dans un repère, on donne les points : A(2,3;5,1), B(4,1;3,8), C(0,9;-0,7), D(-0,9;0,5).

- a) Placer ces points dans un repère et conjecturer la nature du quadrilatère ABCD.
- b) Démontrer si cette conjecture est vraie ou fausse.

Correction

On peut penser que ABCD est un parallélogramme.

b)
$$\overrightarrow{AB}$$
 (4,1 – 2,3; 3,8 – 5,1) donc \overrightarrow{AB} (1,8; – 1,3). \overrightarrow{DC} (0,9 – (–0,9); –0,7 – 0,5) donc \overrightarrow{DC} (1,8; – 1,2).

Les vecteurs \overrightarrow{AB} et \overrightarrow{DC} n'ont pas les mêmes coordonnées, $\overrightarrow{AB} \neq \overrightarrow{DC}$ et ABCD n'est donc pas un parallélogramme.