Exercice n°81 page 158 (Livre Sésamath)

Une coopérative fabrique du jus de pomme. Elle produit entre 0 et 200 litres de jus. Elle a établi que ses coûts de production, en euros, de x dizaines de litres de jus de pommes étaient donnés par la fonction $C: x \mapsto x^2 - x + 10$.

Chaque dizaine de litres produite sera vendue 19 €.

1. Quel est l'ensemble de définition de la fonction C?

La coopérative produit entre 0 et 200 litres de jus et x est exprimé en dizaines de litres donc C est définie sur [0; 20].

2. On appelle R(x) la recette gagnée par la coopérative pour x dizaines de litres vendus. Exprimer R(x) en fonction de x.

Comme chaque dizaine est vendue $19 \in R(x) = 19 \times x$

3. On appelle B(x) le bénéfice réalisé par la coopérative lorsqu'elle produit et vend x dizaines de litres de jus de pomme. Quel que soit x, on a B(x) = R(x) - C(x). Montrer que la fonction bénéfice B est définie sur [0; 20] par $B(x) = -x^2 + 20x - 10$.

$$B(x) = R(x) - C(x) = 19x - (x^2 - x + 10) = 19x - x^2 + x - 10 = -x^2 + 20x - 10$$

- **4.** Étudier les variations de la fonction *B* sur [0 ; 20].
- $B'(x) = -2x + 10 \text{ donc } B'(x) \ge 0 \iff x \in [0; 10] \text{ et } B'(x) \le 0 \iff x \in [10; 20].$

On obtient alors le tableau de variations suivant :

1			
	\boldsymbol{x}	0 10	20
	B'(x)	+ 0 -	
	В	-10 90	10

5. En déduire le nombre de litres que la coopérative doit produire afin d'obtenir un bénéfice maximum. La coopérative doit donc produire 10 dizaines de litres, c'est-à-dire 100 litres afin d'obtenir un bénéfice maximum.

Exercice n°88 page 158 (Livre Sésamath)

Soit f la fonction définie sur
$$[-6; 8]$$
 par $f(x) = \frac{1}{4}x^2 - \frac{1}{2}x - 2$

Soit P sa courbe représentative dans un repère orthonormé $(0,\vec{\iota},\vec{\jmath})$ du plan.

1. Étudier les variations de f sur [-6; 8].

Justifier que la parabole admet une tangente « horizontale » D au point d'abscisse 1.

$$f'(x) = \frac{1}{2}x - \frac{1}{2} = 0 \iff x = 1$$
, on obtient alors le tableau des variations de f :

	х	-6		1	L		8
	f'		_			+	
1	f(x)	10				7	10
			7	_	9		
				4	ŀ		

- f'(1) = 0 donc le coefficient directeur de la tangente à P au point d'abscisse 1 est nul, ce qui signifie que la parabole admet une tangente « horizontale » au point d'abscisse 1.
 - 2. a) Déterminer l'équation de la tangente T_A à P au point A d'abscisse -2.

La tangente
$$T_A$$
 admet pour équation : $y = f'(x_A) \times (x - x_A) + f(x_A)$ avec $x_A = -2$ et $f'(x_A) = -\frac{3}{2}$

Donc:
$$y = -\frac{3}{2}(x+2) + 0$$
 soit $T_A: y = -\frac{3}{2}x - 3$.

b) Étudier la position relative de T_A et P.

Pour étudier la position d'une courbe par rapport à une autre, il faut étudier le signe de la différence de leurs équations.

Étudions le signe de $f(x) - \left(-\frac{3}{2}x - 3\right)$ sur [-6; 8].

$$f(x) - \left(-\frac{3}{2}x - 3\right) = \frac{1}{4}x^2 - \frac{1}{2}x - 2 + \frac{3}{2}x + 3 = \frac{1}{4}x^2 + x + 1 = \left(\frac{1}{2}x + 1\right)^2 > 0$$

 $f(x) - \left(-\frac{3}{2}x - 3\right) > 0$ donc la parabole est au-dessus de T_A .

3. a) Déterminer l'équation de la tangente T_B à au point B d'abscisse 0.

La tangente T_B admet pour équation : $y = f'(x_B) \times (x - x_B) + f(x_B)$ avec $x_B = 0$ et $f'(x_B) = -\frac{1}{2}$ Donc : $y = -\frac{1}{2}(x + 0) - 2$ soit $T_B : y = -\frac{1}{2}x - 2$.

b) Étudier la position relative de T_B et P.

Étudions le signe de $f(x) - \left(-\frac{1}{2}x - 2\right)$ sur [-6; 8].

$$f(x) - \left(-\frac{1}{2}x - 2\right) = \frac{1}{4}x^2 - \frac{1}{2}x - 2 + \frac{1}{2}x + 2 = \frac{1}{4}x^2 > 0$$

 $f(x) - \left(-\frac{1}{2}x - 2\right) > 0$ donc la parabole est au-dessus de T_B .

4. Compléter le tableau de valeurs ci-dessous, puis placer les points correspondants dans le repère orthonormé.

x	-6	-4	-2	0	1
f(x)	10	4	0	-2	$-\frac{9}{4}$

- 5. Tracer les droites T_A , T_B et D.
- **6.** À l'aide des questions précédentes, tracer l'arc de la parabole P situé sur l'intervalle [-6; 1].
- 7. Sachant que la parabole *P* admet un axe de symétrie passant par son sommet, finir le tracé de *P* sur l'intervalle [1; 8].

