FICHE MÉTHODE : DÉTERMINER UNE ÉQUATION DE LA TANGENTE À UNE COURBE

On considère la fonction f définie, sur \mathbb{R} , par : $f(x) = \frac{e^{\frac{1-x^2}{2}}}{2}$.

On note C_f sa courbe représentative.

- 1) Calculer la dérivée f' de f.
- 2) Déterminer une équation de la tangente Δ à C_f au point d'abscisse $x_0 = 1$.

SOLUTION

1) La fonction f est du type: $f = \mathbf{e}^u \qquad \text{avec } u(x) = \frac{1 - x^2}{2} = \frac{1}{2} - \frac{1}{2} x^2$

Nous avons donc : $f' = u' e^u$

Ce qui donne : $f'(x) = -x e^{\frac{1-x^2}{2}}$

2) **Méthode 1** (méthode constructive)

Déterminons d'abord le point A commun à C_f et Δ :

On sait que l'abscisse de A est $x_0 = 1$. L'ordonnée de A est donc : $f(1) = \mathbf{e}^0 = 1$.

La droite Δ est donc tangente à C_f au point A(1; 1).

Déterminons maintenant une équation de Δ :

La tangente Δ est une droite d'équation : y = ax + b

On sait que le coefficient directeur a de la tangente est égal au nombre dérivé de f en x_0 :

$$a = f'(1)$$

D'après la question 1, nous avons donc : $a = -\mathbf{e}^0 = -1$

La tangente Δ a donc une équation de la forme : y = -x + b

On détermine l'ordonnée à l'origine b avec la condition : $A \in \Delta$. Les coordonnées du point A vérifient donc

l'équation de la tangente Δ : $y_A = -x_A + b$

1 = -1 + b

b = 2

Conclusion: une équation de Δ est : y = -x + 2

Méthode 2 (utilisation de formule)

L'équation de la tangente Δ en x_0 est donnée par :

$$y = f(x_0) + f'(x_0)(x - x_0)$$

Ici, nous avons $x_0 = 1$, $f(1) = \mathbf{e}^0 = 1$ et $f'(1) = -\mathbf{e}^0 = -1$.

Nous obtenons : y = 1 - 1(x - 1)

Une équation de Δ est donc : y = -x + 2

Exercices proposés :

Pour chaque fonction définie ci-dessous, déterminer une équation de la tangente au point d'abscisse x_0 :

1)
$$f(x) = x^2 - x - 3$$

$$x_0 = 2$$

2)
$$g(x) = \ln x$$

$$x_0 = 1$$

3)
$$h(x) = x e^{-x}$$
 $x_0 = 1$

$$x_0 =$$

4)
$$k(x) = x e^{-x}$$

$$x_0 = 0$$

5)
$$\ell(x) = (x-1)^3 + x$$

$$x_0 = 1$$

(Voir aussi l'exemple 2 de la fiche méthode : "positions relatives de deux courbe")

Exercice de prolongement :

Soit f la fonction définie, sur \mathbb{R}^* , par : $f(x) = x + \frac{1}{x}$

On note C_f sa représentation graphique.

- 1) Déterminer les coordonnées des éventuels points de C_f en lesquels la tangente à un coefficient directeur égal à $\frac{1}{2}$. Déterminer l'équation de la tangente à C_f en chacun de ces points.
- 2) Déterminer les coordonnées des éventuels points de C_f en lesquels la tangente est parallèle à l'axe des abscisses (tangente "horizontale"). Déterminer l'équation de la tangente à C_f en chacun de ces points.

Réponses des exercices proposés :

1)
$$y = 3x - 7$$
 2) $y = x - 1$ 3) $y = \frac{1}{e}$ (tangente "horizontale") 4) $y = x$

Réponses de l'exercice de prolongement :

1)
$$A(-\sqrt{2}; -3\sqrt{2}/2)$$
 et $B(\sqrt{2}; 3\sqrt{2}/2)$ $T_A: y = \frac{1}{2}x - \sqrt{2}$ et $T_B: y = \frac{1}{2}x + \sqrt{2}$
2) $C(-1; -2)$ et $D(1; 2)$ $T_C: y = -2$ et $T_D: y = 2$